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ABSTRACT

The purpose of this report is to provide a basis for evaluating
security models in the context of secure computer system development.
A number of existing models are summarized, and some general considera-
tions for designing and using security models are presented.
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SECTION 1

EVALUATING MODELS

The purpose of this report is to provide a basis for evaluating
security models in the context of secure computer system development
for DoD applications. A number of existing models are summarized,
and some general considerations for designing and using security
models are presented. A new model is also presented, addressing the
security policy for Al systems as defined in the DoD Trusted
Computer System Evaluation Criteria.[CSC83].

"A paper by Landwehr discusses the role. of formali'security
models and surveys several basic ones [LAN81V. -The ýesent report
overlaps with Landwehr s somewhat in the choice of models, but e--'
hav i1udeu a number of more recent models, with an emphasis on
concrete ones, and the models are presented here in more detail.

The models surveyed in this r ort are listed by category in
Table I. In the/-"General Models category are three models that are
used to express security policies in a general way, without
arthitecrural assumptions that would force them into any of the
other categories. Consequently, these models can be used to prove
results or state requirements that apply to all of the more concrete
models, and thus help to evaluate them.

REPORT OUTLINE

The remainder of Section 1 discusses the characteristics of
security models in general, with brief references to a few models to
illustrate the general concepts.

Section 2 has the model summaries. For each model there are a
few pages that briefly present its main concepts and requirements.
The presentation emphasizes the formal content of the model, such as
entities, relations, and axioms, but mathematical symbology has
mostly been avoided.

It is anticipated that, in the near future at least, secure
system developers will often not be able to find an existing model
that fits their needs exactly. A reasonable course of actions is to
find one or more models that are close, and modify and combine them
as necessary. This sort of activity must be carried out with
caution if the desired security features of the chosen models are to
be retained and improved on; some considerations for this are
discussed in Section 3 of this report.

i•I
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Multilevel Operating Systems

Bell-LaPadula Model
Biba's Integrity Model
Dion's Protection Model
Spadoc

Database Manazement Systems

Navy DBMS Security Model
I.P. Sharp Protected DBMS Tool
MAC Multilevel Secure DBMS
SDC Secure Data Management System

Message Handling Systems

NRL Secure Military Message System

Networkin."

DoDIIS/DNSIX

Guards

"ACCAT Guard
LSI Guard
Message Flow Modulator

General Models

SRI Model of Multilevel Security
Rushby's Separability Model
Goguen-Meseguer Non-interference Model

Table I. MODEL CATEGORIES

Section 4 presents a new model, addressing the requirements for
DoD trusted system evaluation [CSC83]. It resembles the Bell-
LaPadula model, but omits Multics-specific features such as the
directory hierarchy and functional rules. It is more restrictive in
that it incorporates discretionary security into the mandatory
security level and has a more detailed treatment of trustedness that
involves integrity and limited privileges.

2 °oA
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Conclusions and recommendations are given in Section 5, in the
form of questions and answers about security modeling.

A glossary of terms used in the context of computer security is

included as en appendix.

THE USE OF MODELS

A security model is only a part of the process of secure system
development. One paradigm is illustrated in Figure 1, showing four
principal manifestations of system security: as a policy expressed
informally (at least from a mathematical point of view), a formal
security model, a formal top level specification, and an
implementation of the system. This view focusses on the formal
aspects of the development, of course; one can also expand the
implementation area considerably, dividing it into several stages or
components, such as PDL (program design language), high-order
language software, object code, microcode, and hardware, etc.

*2'-..:

nooM

Figure 1. STAGES OF SECURE SYSTEM DEVELOPMENT
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In looking at Figure 1, one should observe not only the boxes
but also the lines joining them. Successive representations of
security should correspond, and those correspondences should be
justified as formally and completely as possible. An important
question about a formal model, in particular, is how it will be used
to evaluate the formal specification. The answer depends as much on
the formal specification as on the model, so we will not be able to
pursue it in this report.

MODEL CHARACTERISTICS

Computer security models are engineering models, giving them
somewhat more freedom than models used in physical science. In
physical science, reality comes first, and one uses a model to make
predictions about physical events and measurements. If a prediction
fails, the model is wrong. In engineering, the model comes first.
The engineer decides what the system ought to do, and then
constructs a system that does it. If the system output does not
match the model, the system is wrong, not the model.

This is not to say that engineering models cannot have
mistakes. They can be internally inconsistent, or they may fail to
meet user needs. Or they may be unimplementable. After all, models
portray a kind of perfection that is not achievable in the real
world. A model is not useful unless one can construct a real system
whose relevant behavior matches that of the model, to within some
needed precision and reliability.

User needs are expressed in the form of security requirements.
Security requirements are imposed at various levels, from various
sources, and it is the job of a model to bring them together in a
way that is meaningful for design guidance. There are overall
requirements for handling classified information, and more specific '•
policies applicable to computer systems, such as DoD Directive
5200.28 and the corresponding manual. These sorts of requirements
lead to the general form of a model as having subjects with
clearances and objects with levels, as well as the classification-
compartment structure of levels, and the notion of access
permission.

The application and environment of a system plays an important
part in setting additional security requirements. The need for
auditing, sanitization, downgrading, and special privileges for
system security officers necessitate more complex models. Other
sources of special requirements are the interface of the computer

4

.. . . .. . . *. ; . . * * . -m'



system with users, via printed output and display terminals, and
with other systems over network connections.

SELECTIVITY

Models are generally selective, in the sense that there are
some aspects of security in the real system that are not mentioned
in the models. This is inherent in the nature of a model: it
represents certain features of interest, leaving out others, for the
sake of clarity.

One type of selection has to do with coverage of the trusted
computing base. The phrase "Trusted Computing Base", abbreviated
"TCB", applies to the totality of components of a system that are
trusted, or security-critical: object manager, policy manager, and
any trusted processes. It may also refer to hardware components
essential to security. As the discussion of interfaces will bring
out, a model may cover some of the security-critical components of a
system, but not all. Many models, for example, do not cover the
specific requirements for trusted processes in a given system. In
this case, one should look for other models to cover the missing
portions.

The more abstract models are selective because they focus on
single types of security requirements. Simplicity is necessary in a
model whose principal purpose is to derive the mathematical
consequences of general protection mechanisms. Models of
information flow and of the propagation of access rights are limited
in this way.

WEAKNESSES IN MODELS

Models can have weaknesses in them, just as formal
specifications can, leading to security flaws in the final system.
Three examples will be mentioned here to illustrate the pitfalls in
designing, or redesigning, models. The first two models involved
are summarized in later sections of this report.

There is a rule in the Bell-LaPadula model called "change-
subject-current-security-level" by which a subject can change its
current security level to any value that will satisfy the simple
security property and *-property. In particular, it is possible for
a subject to downgrade itself, as long as its read accesses are only
to objects at or below the new, lower level.

5'i
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The channel works as follows. When the subject is at the
initial, higher level, it can read one bit of classified information
at that level, and then decide to get read access to a fixed lower-
level object or not, depending on the value of that bit. After
releasing read access to the higher-level object, it can then
downgrade itself to the lower level. At this point, the subject is
not supposed to know any higher-level information; yet, it can
determine the value of the higher-level bit by testing whether it
does or does not have read access to the lower-level object. The
result can then be written into some other lower-level object.

The problem is more serious than its single-bit version
suggests. First, it might be possible to repeat it rapidly, perhaps
hundreds of times per second, with successive bits. One can also
devise more complex versions involving several lower-level objects,
to transmit larger words at a time.

This channel works despite the assumption that the subject is
"memoryless", i.e., it has no implicit memory of its own. The
information has not been stored in the subject, but rather in the
state of the system.

"Of course, one could prevent this channel by requiring that the
"subject forget its accesses when it is downgraded. This is quite
"correct, but it is unfortunately excluded by the rule, which states
that the access set "b" is unchanged.

Technically, a system can still avoid the channel and obey the
model if it never permits a change-subject-current-security-level
call by itself, but only allows the call in a compound request in
which the subject first releases its accesses. But this device
defeats what is probably the best argument in favor of having
specific rules, namely, that they might act as design guidance to
avoid security problems.

The problem that will serve as a second example almost
happened, but was discovered in an early draft of the NRL SMMS
model. The CCR (Container Classification Required) attribute of
containers is supposed to prevent the otherwise allowable access of
a lower-level user to an object of equal level inside a higher-level
container, when the object is referenced indirectly - by its
relative position inside the container. However, there was
originally no axiom that disallowed a service that translated
indirect references to direct ones, enabling users to bypass the CCR
restriction. When this was noted, an new axiom was added:
"Translating Indirect References."

6



A third example is from the draft Integrated Computer Network
(ICN) model [FEI81]. In the ICN model, there is a novel extension
of the notion of a security level. In this model, one security
level is actually a set of basic levels, in order to reflect
indeterminacy or lack of knowledge of the level, pending
computations that will determine the correct assignment. Presumably
at least one of the basic levels in the level set is correct.

The "upward flow policy" in the ICN model requires that when
data is transferred from one object to another, the destination
level set dominates the source level set according to a definition
that would be satisfied, in particular, if there were a
correspondence between the two level sets such that the destination
levels each dominated their corresponding source levels.

After a data transfer operation, one would expect that the
destination level set contains a level that dominates the correct
levels of both the source and destination objects, since the latter
now has both levels of data. However, this is not the case in this
example:

Source Level Set Destination Level Set

(C,{NSI},SECURE) (S,{NSI},SECURE)
(C,(RD},SECURE) (S,(RD},SECURE)

(C = Confidential, S = Secret, NSI National Security Information,
and RD Restricted Data; SECURE is a "partition name".)

Specifically, the problem is that the source data might have
been (C,{NSI),SECURE) while the destination data might have been
(S,{RD},SECURE). The data transfer should not be allowed if the
destination level set does not have a level dominating
(C,{RD,NSI},SECURE). The upward flow policy allows this transfer,
however, so it evidently needs to be changed, for general
application.

The actual ICN system does not permit arbitrary level sets; it
implements only one type of level set, called PARD. A PARD level is
a set of basic levels with the same category set, all in the SECURE
partition. The problem above is eliminated by this restriction,
since the level sets used have multiple category sets and are
consequently not PARD levels.

7



INTERFACES

One of the reasons that the more concrete models differ from
one another is that they are modelling different interfaces of, or
within, a secure computer system. It should not be surprising that
a model of a relational DNS, with powerful operations for forming
views, looks different from a model of a general-purpose operating
system kernel, which controls access on a single-word basis to
virtual memory segments.

When looking for a model, therefore, the first question should
be, "a model of what?" Our first task is to provide some concepts
for phrasing the possible answers. We begin with what is hoped to
be a general picture of a secure computer system, shown in Figure 2.
This is a single-computer system. If we are considering a network
or distributed system, this picture represents one host or processor
in it.

The diagram proceeds from the notion of "per-process virtual
environments," a widely accepted conceptual scheme for security.
There are processes that provide services such as data management,
electronic mail, text editing, and programming in various languages.
Programs, data files, messages, and other objects are accessed by
these processes through a shared facility labelled "object manager"
in the figure.

We will not be concerned here with the boundary between
hardware and software; the figure provides only a functional view of
the system. Any attempt to draw a line between hardware and
software functions would be frustrated by the variety of tradeoffs
between the two in different systems, and confused by the role of
firmware or microcode. It is worth noting, however, that security
is practical only in systems having built-in features to support
memory protection, such as segmentation registers, or the control of
access to data objects, such as capabilities or object descriptors.

An object manager will permit or deny access to an object by
process according to its current "access state". All requests from
processes to change the access state are handled by the component
labelled "policy manager." The policy manager has an interface with
each process to accept state change requests and deliver replies,
and an interface with the object manager to control its state.

The policy manager and the object manager together are often
referred to by the phrase "security kernel". A kernel generally
includes some basic operating system services; those operating
system services that are not security-critical are assumed to be
performed within processes.

"8
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The security architecture of a number of systems also includes
"trusted processes" for certain security-critical tasks. For now,
we simply note that such processes may exist in a given system.

Let us return now to the notion that a model describes an
interface. We can use Figure 2 to draw the interfaces described by
different models, and thus categorize them. We begin by drawing the
interface of the TCB, in Figure 3.

Access control models describe the policy manager interface, as
indicated in Figure 4. The Bell-LaPadula model is in this category.
There are, of course, important distinctions to make within this
class, such as level of detail and the nature of the policy.

The principal weakness of access control models is evident from
this picture. Their interface is inside, and different from, the
interface of the TCB. In other words, they describe only a part of
the security-critical behavior of the system.

Application-oriented models typically describe the interface to -...

a program that supports a service, such as a DBMS or message system.
This program is run within the user process; consequently the
interface divides the user process, as suggested in Figure 5. Note
that the user process has the option of addressing the kernel
directly, although it may not be expected to do so.

Application-oriented models may also be at higher or lower
levels. The I.P. Sharp DMS model is actually a kernel interface
model, in which the policy and object manager interfaces have been
redesigned to handle primitive relational operations. By contrast,
the NRL SMMS model seems to describe the system interface with
people at terminals. We can add terminals to the picture as in
Figure 6 - each terminal is connected to the process that performs
I/O for it. Terminals are really objects that must be accessed
through the object manager, but they are (normally) not shared by
different processes.

With the topic of message systems we must consider the
connection of host computers into networks. A port to a network
node or network interface processor is a protected object that is
typically accessible only to trusted software. A model may or may
not deal with the interface between the host computer and the
network. As a rule of thumb, we might expect that a model of a
network of homogeneous hosts would treat network interfaces as an .'.

invisible implementation detail. This gives a picture like Figure
7. Recent discussions on the requirements for SACDIN have taken the
former approach, since all SACDIN nodes share a common design.

.% '. " .. . .. . .. . . - . . .. ". " . .. '_. ."- .. " . . . - .- . -.. . . , ''_ . '. . ". ', % '%" * " ' • . . . , -' ., " . % " ". ". .
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On the other hand, a model for a secure host computer that must
connect with other systems not assumed to satisfy the same model
should specify the network interface. This means that any
security-critical assumptions about network packets, such as the
existence of a trustworthy security label, are specified.

The DNSIX model for DoDIIS is an interesting example of a case
where the model interface is to several hosts in a network. The
intent of the DoDIIS security architecture is to set up a
standardized interface between various types of hosts and the DDN
(Defense Data Network). Functionally, DNSIX stands between a local
host and other hosts assumed to be connected with it through DDN, as
illustrated in Figure 8. The DNSIX model is for a policy manager
that deals with connection establishment requests from either the
local or any remote host; it also is concerned with audit trail
recording of network activity at its local host.

A guard is a system that stands between two others, monitoring
information flowing from one system to the other, according to some

given release policy. The policy may be algorithmic, in which case
the guard stops information that does not satisfy the given test.
Or the policy may require manual release by a security officer who
must view the information and make a decision. In the latter case,
the guard has an interface with the officer's terminal, as shown in
Figure 9.

12-
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SECTION 2

MODEL DESCRIPTIONS

Each presentation in this section summarizes a model with
regard to any existing information in the following areas:

Sources: Documents referenced as source material for the model
description.

Overview: An introductory discussion sometimes necessary to
point out unique features or objectives of the model.

Entities: Defining the entities in the model, such as subjects
and objects; their attributes, such as security levels;
and changing system status information such as current
accesses.

Operations: In some models, the system state can be
transformed, or data transferred, only by means of a
specific set of operations, which will be listed.

Axioms: Security policy, criteria, properties, constraints,
restrictions, or other limitations on the operation of the
system.

Remarks: Any remaining comments.

13
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BELL-LAPADULA M0DEL

Sources

D. Elliott Bell and Leonard J. LaPadula, "Secure Computer " .

Systems: Mathematical Foundations," ESD-TR-73-278 Vol. I, AD
770 768, The MITRE Corporation, Bedford, Massachusetts, 1 March
1973.

Leonard J. LaPadula and D. Elliott Bell, "Secure Computer
Systems: A Mathematical Model," ESD-TR-73-278 Vol. II, AD 771
543, The MITRE Corporation, Bedford, Massachusetts, 31 May 1973.

D. Elliott Bell, "Secure Computer Systems: A Refinement of the
Mathematical Model," ESD-TR-73-278 Vol. III, AD 780 528, The
MITRE Corporation, Bedford, Massachusetts, December 1973.

D. Elliott Bell and Leonard J. LaPadula, "Secure Computer
System: Unified Exposition and Multics Interpretation,"
ESD-TR-75-306 (MTR-2997), The MITRE Corporation, Bedford,
"Massachusetts, July 1975.

Overviev

The model evolved through three significantly different forms
in Volumes I - III. The Unified version is very close to that

4.in Volume III, with a final selection and renumbering of rules.
Volume I had only one (simple) "security property" and no
transition rules. Volume II introduced the *-property and ten
rules. Volume III introduced the directory hierarchy and used
it to dispense with "control" access. The distinction between ""'
an object's current and maximum security levels also appears in
Volume III, leading to a different form of the *-property.

Entities

- SUBJECTS: Active entities, i.e., users or processes. Users
and trusted processes are considered to be trusted
subjects. Subjects are assumed to be memoryless.

OBJECTS: Passive entities which are protected repositories
of information.

- SECURITY LEVELS:

A security level consists of a classification and a set of
cat egor ies.

*. 14
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Classifications: Top Secret (TS), Secret (S), Confidential
(C), Unclassified (U). These are ordered, TS
being the greatest.

Category: A formal need-to-know designation, for
example, NUCLEAR, NATO, CRYPTO, etc.

Security levels are partially ordered. One level is
greater than or equal to another if the classification of
the first is greater than or equal to that of the second,
and the category set of the first includes that of the
second.

- ACCESS STATE

The system state is expressed as a set of four components,
(b,M,f,H).

The first component, b, is the current access set which
is a set of triples of the form:

(subject, object, access-mode)

This means that subject has current acess to the object in the
specified access mode.

A subject can have access to an object in the following modes:

e execute (for running programs)
r read (observation with no alteration)
a append (alteration with no observation)
w write (both observation and alteration)

The M component is an access permission matrix. The
matrix records the modes in which a subject is permitted to
access an object. Thus, the entries of the matrix are subsets
of the set of access modes.

The f component of a system state is a level function,
which gives the security level assignments for subjects and
objects. A subject has both a maximum level and a current
level; an object has just one level.

The H component of a system state is the hierarchy; a
hierarchy is a directed rooted tree of objects. Objects not
in the tree are "inactive" and not accessible. The model
operations preserve a property of the hierarchy called
compatibility: the security level of each object
dominates that of its parent.

15



Operations

There are eleven "rules", Ri-Rll, corresponding to typical kernel
requests as found in the Multics system. The rules alter the
system state and are required to preserve the security properties.
Inputs to the system are called requests and outputs from
the system are called decisions. The rules may be divided
into the following function groups:

Altering current access: (Access = read, append, execute, or
write)

GET Access: (RI-R4). To initiate access to an object by
a subject in the requested mode.

RELEASE Access: (RW). The inverse of GET Access; terminates
access.

Altering access permission: (Access read, execute, write, or
append)

GIVE Access: (R6). To allow a subject to extend the -designated access permission to another
subject. T l s c e n

RESCIND Access: (R7). The first subject must have write
access to the parent of the object in the
hierarchy. The inverse of GIVE Access.
Rescinding permission has the side effect of
forcing access release.

Altering the hierarchy:

CREATE OBJECT: (R8). To activate an inactive object; i.e.,
attach an object to the current hierarchy. A
newly activated object is considered to be
purged of data. This rule preserves
compatibility.

DELETE OBJECT: (R9). To deactivate an active object; i.e., to
detach from the hierarchy an object and all
other objects beneath it in the hierarchy.
Deleting an object has the side effect of
releasing all accesses to it.

16
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Altering the level function:

CHANGE SUBJECT CURRENT SECURITY LEVEL: (Ri0).
To allow a subject to alter its current security
level, within its maximum level.

CHANGE OBJECT SECURITY LEVEL: (RII). To allow a subject to
upgrade the security level of some object, within
the subject's maximum level.

Axions

The rules have been shown to constrain the operations to obey
the following properties:

Simple Security
Property: A subject may have read or execute access to an

object only if the security level of the object is
less than or equal to the maximum level of the
subject.

*•-Property: An untrusted subject may have append access to an
object only if the security level of the object is
greater than or equal to the current security level
of the subject;

An untrusted subject may have write access to an
object only if the security level of the object is
equal to the current security of the subject; and

An untrusted subject may have read access to an
object only if the security level of the object is
less than or equal to the current security level of
the subject.

The purpose of the *-property is to prevent untrusted software
from compromising classified information by copying it into an
object of lower security level.

Discretionary Security
Property: Every current access is present in the access

permission matrix.

Volume II also mentions a Tranquility Principle, that the
classification of active objects will not be changed during
normal operation.

17
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BIBA'S INTHERITY MODEL

Source

K. J. Biba, "Integrity Considerations for Secure
Computer Systems", The MITRE Corporation, Bedford, MA,
MTR-3153, 30 June 1975.

Overview

Unlike other models, this model does not address unauthorized

disclosure of information; it is concerned only with preventingunauthorized modification.

Entities

- SUBJECT: any system element which performs information accesses.

- OBJECT: any system element accessed.

- INTEGRITY LEVELS:

C-Crucial; VI-Very Important; and I-Important.
These integrity classes are directly analogous to the
security classes: TOP SECRET, SECRET, and CONFIDENTIAL.

Integrity levels are partially ordered under leq (which
stands for less than or equal). I leq VI leq C.

Assignment of an integrity level to a subject is limited by
the permitted integrity level range of the associated user.

- ACCESS CONTROL LIST: - -

An access control list (ACL) is associated with each object.

A subject can have access to an object in any combination of the

following access modes: o (observation), m (modification),
and e (execute). In addition, a subject can have I (invocation)
access to another subject, representing the ability to perform
interprocess communication..*

The Axioms depend on which of several policies are used.

18



Non-discretionary Integrity Policy

There are four types of non-discretionary integrity policy:

I. The Low-Water Mark Policy for Subjects: a policy that is
dynamic in the sense that the integrity level of a subject is
decreabed ab necessary to the lattice meet (extension of
"minimum" to a partial ordering) of the integrity levels of
the objects previously observed.

For each observe (read) access of an object by a subject, the
integrity level of the subject after the access equals the
minimum of the object's and subject's integrity levels
preceding the access.

A subject is constrained to receive modify access only to those
objects which possess an integrity level less than or equal to
that of the subject. A subject can gain "invoke" access only to
subjects of less or equal integrity.

Use of this policy makes generalized, domain independent
programming awkward since the set of objects modifiable by a
given subject can change with each observation as the result of
having accessed lower integrity objects. This makes it possible
for a subject to sabotage its own processing because objects -
which are necessary for its own function can become inaccessible.

2. A Low-Water Mark Policy for Objects: a policy which allows the
integrity level of modified objects to change. Instead of
preventing a subject from modifying higher integrity objects,
this policy lowers the integrity of modified objects, if
necessary, to that of the subject. This policy allows improper
modifications but insures that the improper modifications are
apparent.

A Low-Water Integrity Audit Policy is an unenforced variant of
the above model in which integrity levels are fixed.
Violations are recorded in an audit trail, from which the
"current corruption level", the real integrity level, can be
calculated for each object.

3. The Ring Policy: Integrity levels of both subjects and objects
are fixed during their lifetimes and only modifications of
objects of less or equal integrity are allowed. A subject
may invoke another subject only if its integrity level is less ""
than or equal to the integrity level of the one invoked. A
subject is permitted to observe objects at any integrity level.
A subject needs to be cautious when using data from a lower
integrity object.

19
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4. The Strict Integrity Policy: A complement of the Bell-LaPadula 'p.

security policy consisting of two axioms which, analogously to
the simple security condition and *-property prevent the direct
and indirect sabotage of information.

Three axioms characterize this policy:

Simple Integrity Condition

For any subject with observe access to an object the _
integrity level of the subject must be less than or equal
to the integrity level of the object.

Integrity *-Property

For any subject with modify access to an object the
integrity level of the object must be less than or equal to
the integrity level of the subject.

Invocation Property

If a subject invokes another subject then the integrity
level of the second subject must be less than or equal to
the integrity level of the first subject.

Using these axioms, no information may be transferred from
objects of low integrity to ones of higher integrity, assuming
that information transfer results only from observe and modify
accesses.

Discretionary Integrity Policy

There are three discretionary access control policies:

1. Access Control Lists: As defined in the specific characteristics
list. The privilege to modify an ACL is defined by the
privilege to modify the object in which the ACL is located.

2. Object Hierarchy: a rooted tree of objects: a subset of the
entire object set. The ancestors of an object are those on a
path between it and the root. To access any object a subject
"must have observe access to all its ancestors.

3. Rings: A ring is a privilege attribute of a subject. Rings
are numbered, with lower-numbered rings representing higher
privilege. The access axioms for rings are that:
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a. A subject may invoke subjects of greater privilege only
through an allowed range of rings; and, of less than or
equal privilege indiscriminately.

b. Subjects may only observe objects in an allowed range of
rings.

c. Subjects may only modify objects in an allowed range of
rings.

21.
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DION'S PROTECTION MODEL

Source

L.C. Dion, "A Complete Protection Model," !r,. ot the 1981
Sym2osium 9.n Security and Privacy, IEEE Cat. No. 81CH1629-5,

.4. pp. 4~9-55.

Overview

This model is an advance on the Bell-LaPadula model in that it
combines security and integrity attributes, and provides for
parametric limitations on trustedness and overclassification of
data. It does not specify rules for operations.

Entities

- SUBJECTS: Processes, representing programs executing on behalf
of users.

- OBJECTS: Any data storage entities.

- SECURITY ATTRIBUTES:

Each subject and object has three security levels and three
integrity levels associated with it. Security levels are
partially ordered, and so are the integrity levels.

A subject's absolute security and integrity levels
are the levels at which the associated user is operating.

-'4
A subject's read security level is the highest from
which it can read; the read integrity level is the lowest
from which it can read. These levels will differ from the
absolute levels only if the subject is trusted.

A subject's write security level is the least to which
it can write; the write integrity level is the greatest to
which it can write. These levels will differ from the
absolute levels only if the subject is trusted.

An object's absolute security and integrity levels
represent the sensitivity of the data in the object.

An object's migration security level is the greatest
to which information in the object may flow; the migration
integrity level is the least to which information in the
object may flow.

22
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An object's corruption security level is the least
from which information can flow into the object; the
corruption integrity level is the greatest from which
information can flow into the object.

- CONNECTIONS:

Information flow is assumed to occur only when there
is a (unidirectional) connection from one object to another.
Connections result from access requests by subjects.

Axio

The following consistency properties must be satisfied when a
process establishes a connection from an object 01 to an object
02. In this case the process has read access to 01 and write
access to 02. These properties are more or less directly
implied by the definitions of the various levels given above.-' .•

Migration property: The migration levels of 02 must be at least ý"
as restrictive as those of 01.

Corruption property: The corruption levels of 01 must be at least
as restrictive as those of 02.

Security properties: The subject's read security level must
dominate the absolute security level of 01, and its write . .
security level must be dominated by the absolute security
level of 02.

Integrity properties: The subject's read integrity level must
be dominated by the absolute integrity level of 01, and its
write integrity level must dominate the absolute integrity 4-,
level of 02.

Write/Corruption properties: The subject's absolute security
level must dominate the corruption security level of 02,
and its absolute integrity level must be dominated by the
"corruption integrity level of 02.

Read/Migration properties: The subject's absolute security level
must be dominated by the migration security level of 01, and
its absolute integrity level must dominate the migration
integrity level of 02.

23
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SPADOC (SPACE DEFENSE OPERATIONS CENTER)

Source

L. Buczkowski and J. Freeman, "SPADOC 4 Technical Report Part
I - Formal Security Document", Final Report CSO-TR394, Ford
Aerospace and Communications Corporation, Colorado Springs,
Colorado, 3 November 1983.

Overview

This model is reminiscent of Bell-LaPadula in that it has axioms
and rules, but it provides for aggregate objects like containers
in the NRL model. There is only one mode of access, represented
implicitly by the membership of an object in a "domain" associated
with a subject.

Entities

- SUBJECTS: Certain basic objects that represent active entities
such as users or programs.

- OBJECTS: Entities, which are either basic objects,

aggregate objects or domains.

Basic Object: Data or a subject.

Aggregate Object: A collection of basic objects. The
aggregate object could represent a file record,
display, buffer, or message.

Domain: A collection of aggregate objects. The domain can
represent an address space, a user, a separate
interfacing system, or a file in a database. There are
two types of domains: I elements, domains associated
with interfaces; and S elements, domains within the
main model.

- SECURITY LABEL:

Comprised of two components: a classification and a set of
categories, possibly empty.

- DISCRETIONARY LABEL:

A discretionary label is a subset, possibly empty, of
elements called discretionary items. A discretionary item
may be associated with a group of people or single
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individual. Two elements are identified as discretionary
items: DLCHANGER and SL_CHANGER. These elements permit the
specification of permissions to change the discretionary
label (DL) and security label (SL) mappings.

- MAPPINGS:

A "state" of the model is defined as an instance of four
mappings: SL, DL, Owns and Contains.

Security Label Mapping (SL): This mapping is defined on the
entire set of entities and maps into the security label
set. The security label of a basic object is static.

Discretionary Label Mapping (DL): This mapping is defined on
the entire set of entities and maps into the
discretionary label set. The mapping DL is static on
basic objects.

The following are two Boolean mappings which define the basic
relationships between the three types of entities.

Owns: This function is defined on the set of ordered pairs
(domain a, aggregate object p) of elements from the
Domain set and Aggregate Object set. If Owns(a,p) is
TRUE then "Domain a owns Aggregate Object p." Owns is
static and each aggregate object is owned by exactly
one domain, termed the owner of the aggregate object.

Contains: This function is defined on all ordered pairs
(aggregate object p, basic object b) of elements
belonging to the Aggregate Object set and Basic Object
set. If Contains(p,b) is TRUE, then "aggregate object
p contains basic object b". Contains defines the
relationship between an aggregate object and a basic
object. Each basic object is contained by at least one
aggregate object. -. ,

Operations

There are seven types of transitions in this model. Each
transition changes a mapping, and is initiated by a
subject, termed the "initiator".

In transitions involving a domain, the initiator
and the given domain must satisfy the "initiator-domain
relationship": there is some aggregate object that contains the
initiator and is also owned by the given domain.

25
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Transitions:

UNITFLOW: This transition passes a basic object from one
aggregate object (source) to another (receiver) when both are
owned by the same domain, by changing the Contains mapping.

"AGGREGATE FLOW: This transition passes all basic objects from one
aggregate object to another aggregate object not necessarily
owned by the same domain. In this transition, the Contains,
SL, and DL mapping functions are changed.

PURGE: This transition deletes a basic object from an aggregate
object, changing the Contains mapping function.

The next four transitions specify conditions under which the
security label and the discretionary label of an entity may be
changed. The following four transitions are used to specify the
reclassification mechanism for containers of information within

"the system to reflect accurately the security classification and
discretionary labeling of the information in them. These
transitions are not meant to model downgrading or upgrading of the
"actual classification of the information itself.

CHANGE__SL/AO: This transition specifies conditions under which
the security label of an aggregate object may be changed

either up or down.

CHANGEDL/AO: This transition specifies conditions under which

the discretionary label of a given aggregate object may be
"changed. The preconditions and postcondition are the same as
transition CHANGE-SL/AO with 'discretionary label' replacing
each occurrence of 'security label'. The initiator subject
must be contained in the same domain as the affected
"aggregate object.

CHANGESL/D: This transition effects a change in the security

label of a domain. In changing a label associated with a
"domain, the protective constraint requires that specific
authorization via the discretionary label SL-CHANGER be
associated with the transition initiator.

CHANGE DL/D: This transition effects a change in the discretionarylabel of a domain. In changing a label associated with a-

domain, the protective constraint requires that specific
Sauthorization via the discretionary label, DL-CHANGER, be

associated with the transition initiator.
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Axioms 
a

A secure state is defined as one satisfying the following two
conditions: ("Dominated by" is the Bell-LaPadula partial
ordering.)

a. For all aggregate objects 'p' and domains 'a', if 'a' OWNS 'p'
then SL(p) must be dominated by SL(a) and DL(p) must be
dominated by DL(a).

b. For all basic objects 'b" and aggregate objects 'p', if "p-
CONTAINS 'b" then SL(b) must be dominated by SL(p) and DL(b)
must be dominated by DL(p).

27
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NAVAL DBMS SECURITY MODEL

Source

Richard D. Graubart and John P. L. Woodward, "A
Preliminary Naval Surveillance DBMS Security Model", The MITRE
Corporation, Bedford, Massachusetts, MTR-8475, May 1982.

Overview

This model, like the I.P. Sharp and SDC models, is for a relational
data base system. It does not have an analogue of the *-property,
but each user can be limited to specific operations.

Entities

- SUBJECTS: users

Four classes of users are identified in the NSS application:

Analyst: Able to view, modify, delete, transfer and correlate
information in the system.

Remote-User: Limited to querying the data base via the read
(data) operator.

System Security Officer (SSO): has authorization to change
security levels of data and clearances of users.

Data Base Administrator (DBA): has authorization to define data

bases.

- OBJECTS: The objects in this model include:

Device: A piece of physical hardware, used for input or
output purposes and excluding those mediums used for
primary or secondary storage of data.

Data Base: A collection of relations.

Relation: A two-dimensional array of elements. Can be viewed
either as a set of fields or a set of records.

Field: A sequence of data elements; one column of a
relation.

Record: A sequence of data elements; one row of a relation.
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Data Element: An intersection of a field and record. An
atomic element of the data base.

All of the above, except for devices, are referred to as data
objects. Data bases, relations, fields and records are special
forms of objects known as containers.

- SUBJECT ATTRIBUTES:

Subjects are assigned two security levels: The first is a
clearance which is considered a maximum security level.
Secondly, each user has an access level, a current security
level which varies from system low to the user's clearance.

Operator Authorization List: Associated with each user, this

list indicates which operators a user can use.

- OBJECT ATTRIBUTES:

Security Levels: There two kinds of security levels: DSL,
Default Security Level, and ISL, Implicit Security Level. A
DSL may be set explicitly by a user; otherwise the DSL of
its container applies. An explicit DSL is mandatory for
data bases and devices. An explicit DSL of an object may be
less than, greater than or equal to that of its container.

It is possible for the DSL of a field and record to
conflict. To prevent this, a user may specify whether the
default security level of the field or the record has
priority within the relation.

In addition to the DSL, there is also an Implicit Security
Level: ISL. An ISL is used to indicate the security level
of the most sensitive data in the container or data element.
The ISL of a container is equal to the highest DSL within
the container and changes as this DSL changes. The ISL of a
data element is equal to the DSL of a data element.

Thus, "security level" for this model has two meanings: when
doing comparisons of access levels to security levels,
security level shall refer to the ISL. When referring to
modifying or setting the security level of an object,
security level shall refer to the DSL.

ACL: Each object has two types of access control lists
associated with it. The ACL for an object specifies which

29
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users have what type of access to the object. The types of
accesses valid in a particular ACL depend on the type of
object. There is an access type for each operation (see
below). The exclusionary ACL (XACL) for an object specifies
which users are denied each specific type of access
appropriate for the object. If an object does not have an
"ACL or XACL then the ACL or XACL of its container applies.

Inherent Access: Each data base has an inherent access list,
specifying which users have change-access or
change-level/read access to it, overriding the ACLs of the
objects it contains.

Operations

Operator Class Operator Name Applicability

Data Access Read All Objects
Write All Objects

Delete Containers Only

Data Definition Define-db Databases Only
Define-rel Relations Only

Attribute Changing Change-level/Read All Objects
Change-access All Objects

In order for a user to apply an operator to an object, three requirements
must be met:

1. Operator Authorization: The operator must be listed on the
user's operator authorization list.

2. Non-discretionary: The access level of the user must
dominate that of the object. A user may not upgrade an
object above his own level.

3. Discretionary: the object's ACL and XACL and the ACLs and XACLs
of the containers of the object in question must grant the
user the requested discretionary access to the object or the
user has inherent access to the object.
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I.P. SHARP PROTECTED DBMS TOOL

Source

M.J. Grohn, "A Model of a Protected Data Management System,"
ESD-TR-76-289, I.P. Sharp Associates Limited, Ottawa, Canada, P2
June, 1976.

Overviev

This model is also for a relational data base system. It
assigns a security level (which includes an integrity level
component) to a relation as a whole.

Entities

- SUBJECTS: Processes. A process has both a maximum protection
level and a current protection level.

- OBJECTS: Objects consist of a permission matrix, a
description, and a value.

A permission matrix is a set of elements, each
indicating permission for a subject to either observe
or modify the object.

The description component is motivated by the intended
application to relational data bases. An object can
be a relation, and its description includes the names
and formats of its fields. .

The value component is to be interpreted as the set of
tuples in a relation; it could also be the sequence of
statements in a program.

The components of an object may be accessed separately,
but all three have the same protection level, that of
the object as a whole.

- PROTECTION LEVELS: A protection level has both security and
integrity components, each of which has a
classification and a category set. The partial
ordering of protection levels is based on the partial
ordering of security components as in Bell-LaPadula
and the (inverted) partial ordering of integrity
components as in the Biba strict integrity model.
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- DIRECTORY SYSTEM: For each protection level, there is a
directory consisting of a set of entries
identifying all objects known at that level. An
object is represented by at most two entries: one at
the lowest level at which it is known, and one at its

own level. An entry consists of an object identifier
and a code indicating the level of the other entry for
that object, if any.

Directories may be observed and modified like objects.
For purposes of access control, the directory for a
protection level is assigned that protection level.

Operations

Accesses to any of the three components of objects, or to
directories, are carried out by operations. There are eight
classes of elementary operations, according to the two access
modes and the four kinds of entities that can be accessed.
Elementary operations may be requested in any sequence. There is
no notion of current access state; each requested elementary -

operation is tested against the security policy.

Axioms

The first two properties, stated in terms of "objects", apply
to each component of an object and also to directories.

Simple Protection Property: A subject may observe an object only
if its current protection level dominates that of the object.

*'-Property: A subject may modify an object only if its
protection level is dominated by that of the object.

Tranquility Principle: The protection levels of active objects
will not change during normal operation. (An object is
active if its identifier occurs in a directory.)

Discretionary Protection: A subject can access an object only
if that access mode for that subject occurs in the
permission matrix of that object.

Remarks

The assignment of a protection level to a relation as a whole
may be contrasted with the SDC approach of a per-field
assignment. Relations with fields of different levels can
be simulated with multiple relations having the same primary
key.
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MAC MULTILEVEL SECURE DBMS SECURITY MODEL .

Sources "•
,•<-j

Billy G. Claybrook and Harvey I. Epstein, "A Security •

Model for a Multilevel Secure Database Management •.•
System", The Mitre Corporation, Bedford, Massachusetts,•'•i•ii•

M82-12, February 1982. /<,

Overview :'.'"

The database architecture underlying the security model and the •
model itself, are formally specified using the data abstraction -i•5
approach. The database management system built on this model is •i'•I

intended to run on a trusted operating system. There is .. ",
flexibility to enforce a number of different security policies;,•'•i'

also the model is not specified with respect to any specific
database data model.

.- .-
Brat it lea

•.•<:'
- SUBJECTS: People, devices, processes, etc. i-'-"

L" ".

- OBJECTS: Data stored in the database and referred to as data -.

granules, ii•.•

- SUBJECT ATTRIBUTES : i-•i-i•
°-

User Identifier: Identifies on whose behalf a request is made.

Clearance: Consisting of a classification and category set "•->•
o..(cf. glossary). The intention of the model was ..'.x"

that there only be an ordered set of classifi- "-""
cations, not necessarily only the four given in the "'-"
definition in the glossary. •

- OBJECT ATTRIBUTES :

Data Content: One or more data elements. This is the data to '•'•'-•
be protected in the secure database. In a relational.•J•-,

database, if the data granule is a relation then a data •
element is a tuple. If the data granule is a tuple then

".r." .I
an element within the tuple is a data element. "<-•

Classification: As defined in glossary. •.'.•i

Category set: As defined in glossary.

•."
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Need-to-Know List: The set of all need-to-know elements, one
for each possible type of access. A need-to-know element
is a set of all user identifiers associated with a
particular access type or mode. The access modes are as
follows:

read: Allows user to read data.

modify: Allows user to alter data; this kind of access is
not granted unless read access is also granted.

delete: Allows data to be removed from the database
without being replaced.

Granule Identifier: A conceptualization used for specification
purposes to uniquely identify data granules. It is not
necessarily stored in the database with the data granule,
but is either a tuple identifier (tid) in relational
systems with granularity the tuple; or, equivalent to a
data base key in CODASYL based systems with granularity
the record. In practice, the former are determined by
searching indices and the tid is then used to access the
desired tuple. The latter are system generated values
that uniquely identify records in the database and are
thought of as stored record addresses.

Operations

As in the Bell-LaPadula model, each operation has certain
preconditions involving the security attributes of the
relevant subjects and objects. A violation is signalled
when a precondition fails.

read: The contents of a data granule are returned.

delete: Delete removes the granule of a given identifier from the
database.

N.B. The description of this operation in the source says that
a user can delete only what he has read, write and delete
access to; however, only delete access is checked in the
formal specification of this operation on pages 16-22 in the
document.

datamodify: This operation allows the user to modify the
contents of a data granule.
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datamovemodify: This operation copies one data granule into
another data granule. This is an operation in which data is
moved automatically from one part of the database to another
without a user reviewing the data content. The data granule
is overwritten and will receive the security tag of the
overwriting data granule.

add: When new data enters the database, the data is tagged with
its minimum access information supplied by the user or
determined by the database management system. The user who
first stores the data is allowed to retrieve or modify that
data in case there are inputting errors. Add does not permit
a user to write above his classification, i.e., the user
must have read and write access to the set of data added.

change class: To change classification. A user cannot upgrade
classification of a data granule above his clearance level.

change-category: To change category set. A user cannot change
the category set of a data granule unless he has all the
compartments in the new category set.

change ntk: To change the need-to-know list. A user cannot
modify a need-to-know list unless he is on the read
access list of that data granule.

Remark

This model specifies how access to objects in the database will be
controlled based on the operations which can access those objects.
This can be done by placing a "lock" on each operation. Each lock
will require a "key" to enable a subject to use the operation.
The key may be either an explicit or implicit key. Without the
key for the lock, the requested function will be denied.

An explicit key may be a password or a coded magnetic strip
required each time the function is invoked. Implicit keys are
lists associated with each user indicating those operations the
user is authorized to invoke. The system security officer
modifies the user's list of authorized operations.

Keys are used as additional parameters in a user's request. If
the required key is missing or incorrect, no database activity
will be allowed and a security violation will be reported. System
security officers handle all violations.
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SDC SECURE DATA MANAEMENT SYSTEM

Sources

Thomas H. Hinke, Marvin Schaefer, "Secure Data Management
System", RADC-TR-75-266, System Development Corporation, Santa
Monica, Ca., November 1975.

Overview

The SDC report describes a data management system that is to
operate on a secure MULTICS operating system, using the existing
directory structure and security enforcement mechanisms. The data
base is assumed to be relational, consisting of a set of entries
divided into fields. The model summary here blends the basic data
access model, which merely restates the fundamental DoD
requirements, with theoretical considerations stated later in the
report.

Ent ities

- SUBJECTS: Users. Each user has a clearance, which is a
classification.

- OBJECTS: An object is a field of an entry. Each field has
a classification, independent of the entry.

- CLASSIFICATION: Consists of a military classification, a
category, and a need-to-know list.

military classification: A classification as defined
in the glossary.

category: Set of compartments; this model provides for
sixteen compartments.

need-to-know list: A set of users for each access mode.
The possible access modes are read and write;
other modes are interpreted as kinds of read and
write for security purposes.

Axions

A user may read an object if and only if the classification of the
object is dominated by the clearance of the user, and the user
belongs to the need-to-know read access list. "Domination" is

determined in the usual way, ignoring the need-to-know lists.
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A user may write into an object if and only if the classification of
the object is precisely equal to the clearance of the user, ignoring
the need-to-know list, and the user belongs to the need-to-know
write access list.

Write access implies read access.

No field of an entry in a relation may receive a value prior to the
assignment of values to every primary key field to that entry.

No field in the primary key of a relation may be modified.

The fields involved in the primary key to a relation must be

classified at a level such that they are dominated by the
classification of every remaining field in the relation.

All of the fields comprising the primary key to a relation must have

identical classifications.

No subject may update a non-key field if the agent has the capability of

reading any field whose classification strictly dominates the classifica-

tion of the field. Updating fields based upon the contents of other

fields is an asymmetric process with respect to field classification.

The deletion of an entry must be able to be accomplished by writing at

only one level of classification.
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NRL MODEL FOR SECURE MILITARY MESSAGE SYSTEMS (SMMS)

Source

C.E. Landwehr, C.L. Heitmeyer, and J. McLean, "A Security
Model for Military Message Systems," NRL Report 8806,
Naval Research Laboratory, Washington, D.C., May 31, 1984.

J. McLean, C.E. Landwehr, and C.L. Beitmeyer, "A Formal
Statement of the MMS Security Model," Proc. of the 1984
Symposium on Security and Privacy, IEEE Catalog No.
84CH2013-1, pp. 188-194.

Overview

This model is for a family of systems sharing certain message
characteristics, and differing from one another in the
particular set of operations available to users.

Entities

- USER: A person authorized to use the MMS. A user has a
clearance, userlD, and a role. A clearance is a
classification.

A userID is a character string uniquely identifying the
user, needed for logging in.

A role denotes the job the user is performing,
e.g., downgrader, releaser, distributor etc. A user can
change a role during a session only if authorized for a given
role. Each role has the ability to perform certain functions.

- ENTITY: Object or container.

An object is the smallest unit of information in the
system to which a classification is attached.

A container has a classification and may contain objects,
each with its own classification, and/or other containers;
e.g., message files and messages are containers, some fields

of a message are containers and devices will usually be
containers.

Entities have unique identifiers, used for direct references
to them. An entity in a container may also be referenced
indirectly with a sequence of names beginning with the
unique identifier of the outermost container, giving
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the location of the entity in a relative fashion.

Container Clearance Required (CCR): An attribute of some
containers. For these containers, a user must be
cleared at least to the container classification to
have access to any of the entities in it.

Message attributes: A message will be a container which
includes the following information: To, From,
Date-Time-Group, Subject, and Text fields plus other
fields such as Drafter and Releaser.

- CLASSIFICATION: A sensitivity level and a set of compartments.
A sensitivity level is a classification as defined in the
Glossary; a compartment is as defined in the Glossary.

- ACCESS SET: A set of authorizations that is associated with an
entity. An authorization permits a specified subject, or any
subject with a specified role, to use that object as a
specified argument of a specified operation.

Axioms

Security Assumptions:

The System Security Officer (SSO) is assumed to assign clearances,
device classifications and roles properly.

The user is assumed to enter the correct classification when
composing, editing, or reclassifying information.

Within a classification, the user is assumed to address messages
and to define access sets for entities he creates so that only
users with a valid need-to-know can view the information.

The user is assumed to control properly information extracted
from containers marked CCR (i.e., to exercise discretion in
moving any information to entities that may not be marked CCR).

Security Assertions: The following statements hold for a multilevel
secure MMS:

Authorization: A user invokes an operation on an entity if
only if authorized by its access set.

Classification The classification of any container is always

Hierarchy: at least as high as each of the
classifications of the entities it contains.

39

7.. .. ..



•"Changes to Information remnoved from an object inherits the
Objects: classification of that object. Information inserted

into an object must not be classified at a levelC eabove the classification of that object.

"Viewing: A user can only view (on some output device)
an entity with a classification less than or
equal to the user's clearance and the
classification of the output device.

Access to
CCR Entities: CCR restrictions must be obeyed (see above).

Translating A user can obtain the ID for an entity that he
Indirect has referred to indirectly only if he is
References: authorized to view that entity via that

reference.

Labeling Any entity viewed by a user must be labelled
with its classification.

Setting Clearances,
Role Sets, and Only a user with the role of System Security
Device Levels: Officer can set these. ":I'.

Downgrading: No classification marking can be downgraded
except by a user with the role of downgrader who
has invoked a downgrade operation.

Releasing: No draft message can be released except by a
user with the role of releaser.
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DODIIS/DNSIX

Sources r -f

L.J. LaPadula, "DoDIIS Security Protection for
Information Exchange: Requirements," The MITRE Corporation,
Bedford, Massachusetts, MTR-8756, Vol. I, August 1982.

L.J. LaPadula, "DoDIIS Security Protection for Information
Exchange: Top Level Design Specification," The MITRE
Corporation, Bedford, Massachusetts, MTR-8756, Vol. 2,
November 1982.

Overview

The referenced documents do not explicitly describe a model,
but rather a set of requirements and a high-level functional
specification that answers those requirements. However, those
aspects of the implied model that are apparent are described
be low.

The purpose of DoDIIS security protection is to allow a user
at one node to access protected resources located remotely at
another node. This requires that access control at each host
must be augmented by an additional system called DNSIX
(DoDIIS Network Security for information eXchange) to handle
remote accesses. Note that a remote access involves activity
by DNSIX systems at both the local and remote nodes.

Entities

- SUBJECT: A composite entity which includes a local user and
session at a terminal, or a remote user and session at a host
("host" is synonymous with "node").

- OBJECTS: Datagrams (ingoing and outgoing) and protected
resources.

- ATTRIBUTES: All of the above entities have an associated
security level. Security levels are defined as in the
Bell-LaPadula model.

Each protected resource has the equivalent of an access
control list, giving the access privileges of each user. The
possible access modes are read, write, and execute.
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A datagram has a source node and a destination node, and
contains either data or an operation request.

- ACCESS STATE

The current state of a DNSIX system consists of a set of
sessions. Each local session is associated with a local user
and a terminal. Each remote session is associated with a
remote user and a node. The DNSIX at the remote node must
have a corresponding local session with the same security
level and user. A DNSIX system also has an audit trail file.
The handling of every operation request has the side effect
of creating an audit trail record specifying the time,
source, and disposition of the request.

Operations

Identification Each operation request is accompanied by the
identification of the session responsible for
it."-

Local vs. Remote Any operation request to DNSIX may come either
from a local user or (via a datagram) from a
remote user. Requests to remote hosts are
generated from local requests to create the
appropriate datagrams.

Session Initiation Operations exist to request the creation and
deletion of local or remote sessions. "I,•

Access The model does not record "current access" as
part of the state; instead, accesses are
controlled on a transaction or operation basis.
Hence, there are operations for exercising
access in read, write, and/or execute mode to
protected objects.

Axiom

Login: A local session level is dominated by the
associated user and terminal levels.

Node Association: A remote session level is dominated by the
remote host level.

Mandatory Access: A request for access to a protected resource by
a user in a session is permitted only if the
resource level is dominated by the session level
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Discretionary
Access: A request for access to a protected resource by

a user in a session is permitted only if the
requested mode is contained in the user's
privilege.

Security Label
(Outgoing): The level of an outgoing datagram is dominated

by the local host level.

Security Label
(Incoming): The level of an incoming datagram must be

dominated by the remote (source) host level.

3.
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ACCAT GUARD

Sources

J. Keeton-Williams, S.R. Ames, Jr., B.A. Hartman, and
R.C. Tyler, "Verification of the ACCAT-Guard Downgrade Trusted
Process, Volume I: Overview and Major Results," The MITRE
Corporation, MTR-8463, Vol. 1, September 1981.

J. Keeton-Williams, B.A. Hartman, J. Abbas, and R.C. Tyler,
"Verification of the ACCAT Guard Downgrade Trusted Process,
Volume III: Specification and Proof", The MITRE Corporation,
MTR-8463, Vol. 3, January 1982.

Overview

The ACCAT Guard system connects two networks which have different
security classifications. The higher-level network is the Navy
Ocean Surveillance Information Systems (OSIS) Baseline; the
lower-level one is the Navy's ACCAT (Advanced Command Control
Architectural Testbed) system. lower-level one is the ARPANET.
process, called the DGTP (DownGrade Trusted Process), implemented
on top of a kernel (KSOS-11). The I1TP uses kernel commands to
accept file downgrading requests from the higher-level network,
display the associated file at a terminal for the watch officer,
accept the watch officer decision (accept or reject), and (if (.accepted) send the file to the lower level network. A significant

aspect of the model and subsequent verification effort is that the
watch officer terminal was explicitly included as part of the DGTP
system and the verification effort thus required analysis of the
properties of the terminal.

The model given below is a top-level, or security, specification
of the DGTP, called SO in the references. The role of the kernel
is invisible at this level.

Entities

The state consists of four sequences, each of which represents
the history of transactions which have occurred at one of four
points in the DGTP interface:

1. filesviewed: files from the DGTP system to the watch
officer;

2. swo.decisions: decisions from the watch officer to the DGTP
system;
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3. msgs-to.low: messages from the DGTP to the lower-level
network (passed on with some modification from the
higher-level network);

4. filestolow: file notes from the DGTP to the lower-level
network.

Inputs from the higher-level network to the DGTP are not recorded
as such in the system state, but exist implicitly as a way of
supplying a file identifier, a message, and a file for DGTP
action. A message is either a control message or not. If not, it
contains a file identifier. A file note contains a file
identifier and a file.

Axiom.

A sequence of system states is secure if and only if it is a
ICTPEVOLUTION, defined as a concatenation of QUALIFIEDDOWMERADEs
and NONPRIVILBrED transitions.

A NONPRIVILEGED state transition is one in which there is no
change in either the files_to_low or msgs-to-low histories.

A QUALIFIEDDOWNGRADE state sequence consists of a DISPLAY
followed first by a SWOREPLY and then by a DOWINRADE.

A DISPLAY is a state transition in which an input file is appended
to the filesviewed history.

A SWOREPLY is a state transition in which a "swo accept"
decision is appended to the swodecisions history.

A DOWNGRADE is a state transition in which the msgs.tolow and,
usually, the files to low histories are augmented. The new
msgto-low entry is the input message with its identifier field
replaced by the input identifier. The new filestolow entry
is a file note consisting of the input identifier and the input
file. In the case of a control message, the file identifier
does not exist and the filestolow history remains unchanged
when passed to the lower-level network.
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LSI GUARD-e

Source""
S. Stahl and J6G. Keeton-Williams, '-SI Guard Security

Specification," MTR-8451, Revision 1, The MITRE .

Corporation, Bedford, MA, August 1982. ..

Overview "?

An LSI Guard system, like an ACCAT Guard, stands between two.,,
systems at different security levels, denoted "low" and "high". •:

Messages go from one of these two systems to a Guard user, who :

may then request that it be sent (from that user) to the other•
side.

i'i

The model is written in the same formal style as the ACCAT
Guard model, except that the state components are individual -
messages rather than message histories. ~~

• ~Entities .

The LSI Guard state consists of a flowAR control m ,

a communication output, and a downgrade message. -

A flow control matrix is indexed by sender and receiver; •.senders and receivers are either users or one of the special
participants "low", "high", or "fcm" (representing the flow
control matrix itself)o The matrix entry for a given sender

vand receiver is a set of permitted messages.

A comsunication consists of a sender, receiver, and a "-g"
message. Requests to the system from a sender are in the form of

conumunications, and cause state transitions. The appearance of a "communication output in the new state indic ater to the message

is actually transmitted to the receiver. s aT

A message has a type label and a content. ••

A secure sdr-up state is empty except that there exists a

user authorized to send any "tsso" (terminal system securityofficer) message.hs i

Azioms .

A state sequence is secure if it begins with a secure start-up
state, and every transition in it is a secure event. A transition
ais secure oni ion , and douna n is authorized in the

.'S

Aflow control matrix.i nee ysne n eevr

cotolmtixislf. Te.ari nryf.a-ie sne

an.-receiver is-a.set.ofpermitted messages.

A---'consists of-- -- a- sender, receiver, and- a....7e
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A secure event either enters an authorized communication output
into the new state, updates the flow control matrix, or enters a
message into the downgrade message component, where it can be
viewed for further procesing.

Flow control updates are caused by input communications addressed
to "fcm". Several particular types of updates are specified. The
model identifies various user "privileges" which summarize classes
of entries in the flow control matrix. These permit users, for
example, to connect with the low and high sides, or modify the
flow control matrix to allow emergency direct connection between
the two sides.
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"MESSAGE FLOW MODULATOR

"Source

D.I. Good, A.E. Siebert, L.M. Smith, "Message flow modulator
final report," Technical Report 34, Institute for Computing
Science, The University of Texas at Austin, Austin, Texas,
December 1982.

Overview

The message flow modulator is a trusted program, implemented in
Gypsy, designed to monitor the flow of security sensitive message
traffic from the U.S. Naval Ocean Surveillance Information System.

Entities

The message flow modulator (MFM) receives messages from
a source and forwards Passed messages to a
destination and rejected messages to a log.

A message is a sequence of ASCII characters beginning with
"ZCZC" and ending with "NNNN".

The MFM has a table of patterns. A pattern is a sequence of
characters representing a set of character sequences matching it
according to certain wild-card conventions. Patterns are used to
specify key words that indicate that a message is security
sensitive and should be rejected.

Axioms

A message is passed if and only if it does not contain any
substrings matching any of the patterns in the table.
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SRI MODEL OF MULTILEVEL SECURITY

Source

R.J. Feiertag, K.N. Levitt, and L. Robinson, "Proving
Multilevel Security of a System Design," Proc. Sixth ACM Symp.
on Operating Systems Principles (November 1977), 57-65.

Overview

This model is the oldest of several related models taking a
particular, very abstract approach to defining security, as .-
the invisibility of higher-level users to lower-level ones.

Entities

A secure system is a black box, or sequential abstract machine,
whose inputs and outputs have security levels associated with them.
Inputs are called operations and are in the form of function
invocations, consisting of a function name and arguments for the
function.

Security levels are partially ordered, larger elements representing
greater sensitivity. The same security level format is used as in
the Bell-LaPadula Model.

- SUBJECTS: Subjects are not explicitly represented in the model.
They exist implicitly as the source of inputs and the
destination of outputs.

- OBJECTS: There are actually two models: a general model, which
does not need the concept of an object; and a restricted
model, which does. In the restricted model, the internal
state of the system is assumed to be comprised in the
assignment of values to a set of state variables, which play
the role of objects. Each state variable has a constant
security level.

Axioms

In the general model, there is only one axiom. This states that
after a sequence of operations, the last output depends only on
those operations of lesser or equal security level.

In the restricted version of the model, there are three axioms
given which, together, are stronger than the axiom of the general
model:
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(a) The output of an operation depends only on the values of state
-S variables of lesser or equal security level.

(b) The new value of a state variable (aft ~r an operation) depends
only on the values of state variables of lesser or equal
security level.

(c) The value of a state variable can be changed only by an
operation of lesser or equal security level.

* Remarks

The reason for introducing the restricted model, with state
variables and stronger axioms, is that the three axioms are easier
to check when the system is specified formally and nonprocedurally
in a language like SPECIAL.

The model covers non-discretionary security and non-disclosure
properties only. Because of the recognition of state variables
as objects, an analysis technique based on this model can detect
covert storage channels.
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RUSHBY'S SEPARABILITY MODEL

Source

J.M. Rushby, "Proof of Separability: A Verification
Technique for a Class of Security Kernels," International
Symposium on Programming, Lecture Notes in Computer
Science 137, Springer-Verlag, New York, 1982, pp. 352-367.

Overview

The "separability" policy defined by this model is a policy
of isolation between users, so that the behavior of the shared
system is indistinguishable to each user from that which could
be provided by a machine dedicated to that one user.

Entities

A system is modeled as an abstract machine with states, inputs,
outputs, and functions to determine the next state and output
from a given state.

Inputs and outputs are vectors with a component for each user.

Machine transitions occur in pairs: an optional input transition
followed by an autonomous state-state transition. Corresponding
to the sequence of states is the associated sequence of outputs.

Axioms

A machine is secure if each user's sequence of output components
is independent of the input components from other users, in the I
sense that another sequence of inputs having the same components
from this user would result in an output sequence with the same
components for this user.

This definition excludes timing channels, since the machine is
synchronous, and denial of service. A weaker definition is given
that does not count the number of consecutive transitions a
particular output component appears, and ignoring the premature
termination of an output sequence. The weaker definition is
viewed as more realistic, since the exclusion of timing channels
and denial of service is beyond current security kernel technology.

Remark

The separability policy can be applied to some systems where
limited inter-user communication is possible, by applying
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the policy to a slightly modified system where the desired
communication paths are, for verification purposes, cut.

4.-
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GOGUEN-MESEGUER NON-INTERFERENCE MODEL

Sources

J.A. Goguen and J. Meseguer, "Security Policies and Security
Models," Proc. of the 1982 Symposium on Security and
Privacy, IEEE Catalog No. 82CH1753-3, pp. 11-20.

J.A. Goguen and J. Meseguer, "Unwinding and inference
control," Proc. of the 1984 Symposium on Security and
Privacy, IEEE Catalog No. 84CH2013-1, pp. 75-86.

Overview

The non-interference notion expressed in this model is the A
most general idea underlying the models in the SRI heritage.

*Entities

A system has states, users, and two types of commands:
state-changing commands and output commands. The next state and
output depend on a user (the user initiating the state change or
output) as well as on a state and command. In the earlier form of
the model, a state was partitioned into a capability table
component and a remainder, and state-changing commands affected
only one of the two components at a time.

Axioms

The model can support any policy expressible as a set of
non-interference assertions. A non-interference assertion
specifies that state changes initiated by a given user cannot
affect the outputs received by another given user. Specifically,
the second user would receive the same outputs if the first user's
state changes (since some initial state) had not occurred.
The definition generalizes to sets of users and can specify
particular sets of commands.

A multilevel security policy can be expressed by assigning
security levels to users and requiring that a user not interfere
with other users having lower or incomparable security levels.
This is essentially the same policy stated in the SRI model.

Remarks

The model can also express Rushby's separability policy, and a
variation on non-interference can be used to permit limited
communication between users.
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SECTION 3

USING MODELS TO DESIGN MODELS

VALID INTERPRETATIONS OF MODELS

Security implications of an abstract model are pazsed on to a
more concrete model when the latter is a "valid interpretation" of
the former. This means that the axioms satisfied by the abstract
one are also satisfied in the concrete one, and hence all theorems
about the abstract one are also true for the concrete one. In
particular, the security axioms and their consequences will be
carried over.

A good introduction to the concept of valid interpretation of
models, in a computer security context, may be found in a CWRU
report (WAL74]. Enough of the essential ideas will be summarized
here to allow some observations to be made.

A model is viewed as consisting of a collection of entities and
a collection of relations among those entities that satisfy some
axioms. Typical entities in a security model are subjects, objects,
security levels, access modes, and states.

To set up a correspondence between two models, one needs a
mapping of entities and relations. A more concrete model may rename
the entities, and also may refine them into subclasses. For
example, both users and processes may play the part of subjects.
The mapping of entities between the models will then say that a user
is mapped to a subject, and so is a process. Note that only the
concepts of "user" and "subject" are linked by this, not specific
users or subjects.

A mapping of relations is needed to translate axioms in the
abstract model into the notation of the concrete one. We will go
into this process in some detail because the way mappings work is a
fundamental and important idea.

"Suppose, for example, that one axiom of an abstract model is
this form of the simple security condition:

If a subject has read-access to an object, in any state,
the level of the subject dominates the level of the
object in that state.
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Now we want to reinterpret this axiom for a more concrete model in
which users and processes are mapped to subjects, files to objects,
and levels, access modes and states remain the same. The axiom
starts out with a reference to a subject having some kind of access
to an object in a state. This is evidently a relation joining a
subject, an object, an access mode, and a state. In order to
proceed we will have to be more formal. Let us assume that this POF
relation is denoted by:

b(s ,o ,m,q).

(Why "b"? The model designers pick the names of the relations - you
are stuck with what they chose. This is not an atypical example,
since Bell-LaPadula has a very similar relation called "b".)

The simple security condition in the abstract model is, in this
more formal notation,

If b(s,o,m,q) and m "read" then ...

This axiom must be restated in the terminology of the concrete
model. The concrete model will not (not necessarily, anyway) have a
relation named "b", so we must look at the mapping to tell us about
how to determine what kind of access users or processes have to
files. Suppose there is a relation

Access(p,f,m,q)

among processes, files, access modes, and states in the concrete
model. (Concrete models tend to have more mnemonic relation names.)
If it is intended that this relation represents the same thing as
"b" in the abstract model, the mapping will say so, in a form like:

If s is a process,
b(s,f,m,q) iff Access(s,f,m,q).

This statement effectively defines the relation "b" for the concrete
model in the process-subject case. Another statement would be
needed to cover the user-subject case; note that a different
relation, instead of "Access", might be used in that case. Also,
the right-hand sides of mapping definitions need not be as simple as
this. A logical expression involving two or more concrete relations
may be needed.

With the mapping of "b" to "Access" set up, we can see that the
simple security condition in the concrete model will begin: V.

If s is a process and Access(sf,m,q),
or s is a user and ...
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I.1

This translated axiom, derived from the abstract model but stated in
the context of the concrete model, may or may not be true. The
concrete model has its own axioms, and this need not be one of them.
If we want to prove that the concrete model is a valid
interpretation of the abstract one, we must show that this
translated axiom, and any others, are theorems provable from the
concrete model's own axioms.

MODELS WITH OPERATIONS

It was not hard to see how axioms are translated into more
concrete forms when they only involve a single state. It is less
obvious what to do when the abstract model or the concrete one, or

* both, have axioms restricting state changes. Most models have some
restriction on state changes, if only to say that subject security
levels or object security levels do not change. Models with
"operation specifications, like the rules in Bell-LaPadula, impose
severe restrictions on state changes.

From a logical point of view, states do not "change"; instead,
states are entities that are related to other states by standing in
the relationship of "succession". This relation can be mapped,
like others, when checking for valid interpretations.

It is, of course, much easier to ascertain that this process
can be carried out in principle than it is to perform it for a
particular pair of models.

COMBINING MODELS

The process of combining the features of two models can be
viewed as finding a model that is a valid interpretation of both of
the two models. The first step in the combination is to find a
single terminology for the entities and access modes, etc., that can
be mapped conveniently to both models. The combination is then
checked to see that it satisfies the concrete versions of the axioms
of both of the original models.

APPLYING INFORMATION FLOW MODELS

Some very abstract models, such as the ones surveyed in this
report in the 'teneral Models" category, are concerned with transfer
of information in a more general sense than copying data from one
object to another. They were originally motivated by the
observation that covert channels for compromising information exist
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in systems that were secure according to some access control model.
Kernel access-denial responses, for example, carry information that
might be modulated by Trojan horses, invisibly to access control
models.

As it happens, the precision inherent in information flow
models also makes it possible to show that certain systems are
secure despite violations of an access control model. The best
example is a trusted process that has read access to high level
files and write access to low level files, but avoids compromises
because its algorithms do not mix the information.

Information flow models are analysis rather than synthesis
tools; they are no help in suggesting the functional characteristics
of a model or design. They are most useful for models having
operation specifications. In fact, they have been applied in the
past primarily to analyze formal system specifications rather than
models.

Much can be gained by applying flow analysis techniques to
concrete models having operation specifications. The flaw mentioned
in Section 1 in the Bell-LaPadula model, for example, involving the
change-current-security-level rule, would have been discovered by an
information flow analysis. Incidentally, one practical way of
applying existing tools to analyze a model this way is to translate
the model into a specification language for which a flow analysis
tool is available.
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SECTION 4

A MODEL FOR Al POLICY

"Recently, the question of the proper function and design of a
model has come under intense scrutiny, largely because of the
publication of the Department of Defense Trusted Computer System
Evaluation Criteria (CSC83]. A formal model of the applicable DoD
security policy is required for systems to be rated in the higher

•- protection classes.

It has been recognized that no one model will serve the needs
*• of all applications. Nevertheless, it is felt to be beneficial to

A. have a model that addresses the policy stated for Al systems, the

highest class included in the Criteria. It is anticipated that such
a model could be used in two ways. It could be the model of the
security policy supported by a proposed TCB (Trusted Computing
Base), as required in the Criteria. It could also serve as a
"kernel" around which more elaborate models can be built.

A model with those objectives is necessarily constrained in
"style and applicability. First, its subject matter and content are
constrained to express the Al security policy as stated in the
"Criteria. Hence, it deals with subjects, objects, security
classifications and categories, and must include a particular
restriction on the ability of subjects to read or write objects on
the basis of their respective security levels.

Like the Criteria document itself, the model will be limited in

application to general purpose operating systems. While it is

possible to build a secure message system, data management system,
guard system, or network switch on top of a secure general purpose
operating system, one would expect the security policy in each case
to have various unique features. In some cases they could be added
to the Al model in the form of a superstructure or concrete
interpretation, but in other cases it may be more practical to
construct a different model altogether.

The Criteria document suggests that the Bell-LaPadula model
would be acceptable as a formal model. It is doubtful, however,
that it is the best choice for a model for a new TCB to be submitted
for Al certification. One reason is that it is unnecessarily
restrictive - it includes specific "rules" for system functions,
which may be incompatible with the desired TCB functions, and it
includes a Multics-directory-like object hierarchy. The set of
rules "...is in no sense unique, but has been specifically tailored
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for use with a Multics-based information system design" [BLP75, p.
19]. Another reason is the covert channel in that model, discussed
in Section 1, together vith the possibility that other such channels
exist.

In designing a new model to address Al security policy, the
initial objective was to create a "minimum model", one that covered
the Criteria requirements and nothing more. Consequently, while the
suggested Al model below resembles the Bell-LaPadula model in having
subjects, objects, accesses, and a form of the *-~property, it does
not have rules for specific operations or an object hierarchy.

As other authors have discovered, however, there is an
overwhelming temptation for a model designer to add new features in
response to perceived deficiencies in other models. The model
described below has two innovations. One expands the treatment of
trusted subjects in a way intended to be more flexible and
effective; the other incorporates discretionary security into the
mandatory security level.

Trustedness of subjects is dissected into a collection of
separate privileges which must be inherited by the subject from the
objects to which it has execute access. Objects possessing such
privileges are required to have high integrity, enforced by a
component of the security level.

Discretionary security is handled by adding user-list
components into the security level. Since security levels can be
changed only by privileged software, the effect is to prevent
individual access control from being subverted by Trojan horses.

INFORMAL STRUCTURAL DESCRIPTION

System State

The system state consists of a set of subjects, a set of
objects, and some functions defining their current status. Each
subject and each object has a security level and a (possibly empty)
set of privileges. Associated with each subject is a set of objects
to which it has read access, a set to which it has write access, and
another set to which it has execute access.

A security level has the following components: classification,
category set, integrity class, integrity category set, distribution
list, and contribution list. The partial ordering "dominates" of
security levels is based on the ordering of each of the components.
The third through fifth components are ordered inversely, i.e., a
greater level has a smaller value in those components.
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Transitions

A transition is a state change in response to a request from
some subject, called the requestor. There will be security
conditions defining restrictions on secure transitions as well as on
secure states.

Some transitions create subjects or objects. Mathematical
entities are never really "created", of course; this just means that
the set of subjects or objects associated with the next state is
larger. Subjects or objects can also be deleted. Note that, since
every "existent" subject and object has a security level and other
attributes, any creations or deletions imply a change in those
components of the state as well.

SECURITY CONDITIONS

Several of the security conditions given below are waived for
subjects having an appropriate privilege; those conditions are
starred (*). Subjects inherit their privileges from the objects
they execute. Privileged subjects and objects must have a
particular integrity category, called "Trusted", in order that their
trustworthiness may be preserved.

A subject can grant a privilege p to an object only if it has a
special privilege (Create-p) to do so. In an effort to control the
propagation of privileges, we require that no privilege can create
itself, either directly or indirectly. (To ensure this, define a
function "Create" such that Create(p) - Create-p, satisfying the
restriction that, for any set A of privileges, Create(A) cannot be a
subset of A.)

Secure State Conditions

The Read and Write conditions below are derived from [CSC83,
"section 4.1.1.4, p. 45].

• Read: The level of a subject dominates the level of any object

to which it currently has read or execute access.

* Write: The level of a subject is dominated by the level of any
object to which it has write access.

Privilege: The privilege set of a subject is included in the
privilege set of any object to which it has execute access.
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Trust: If a subject or object has any privilege, The integrity
category component of its security level includes the Trusted
category.

Secure Transition Conditions

Transition conditions are waived only when the requestor
(rather than any other subject mentioned) has the appropriate
privilege.

* Tranquility: The security level of a subject or object does
not change. Note that a change has different effects on different
components of the security level. Separate privileges may be
required for changes in different components of the security level.

* Creation: The security level of a new subject or object
dominates that of the requestor.

* Access change: Only the accesses of the requestor can be
changed.

Privilege change: A privilege p can be entered into the

privilege set of an object only if the requestor has the privilege
Create-p•

SECURITY LEVEL COMPONENTS AND ORDERIIG

A security level has six components, the first two having to do
with information sensitivity, the next two with integrity, and the
last two with individual access control. A security level dominates
another if its sensitivity and contribution list components are
greater (or equal) and its other components are less (or equal).
The general principle is that a higher security level implies a
greater restriction on access.

The partial ordering for each component is given below with the

component description.

Classification

Usually one of the following: Unclassified, Confidential,
Secret, and Top Secret. However, eight classifications are required
for some National Security applications, according to guidance in
[CSC83]. The classifications given above are linearly ordered,
Unclassified being the least and Top Secret the greatest.
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Category Set

Individual categories vary with the community, but a given
system should support at least 29 categories to represent document
compartment markings, according to guidance in [CSC83].
Furthermore, some additional categories may be needed to represent
dissemination controls and other distribution limiters. Category
sets are ordered by set inclusion, the empty set being the least and
the set of all categories the greatest.

Integrity Class

Because the integrity class is an inversely ordered component,
a subject can only read from a higher or equal-integrity object and
write into a lower or equal-integrity object, so copying and
computational operations cannot increase integrity. This form of
integrity control, using the Read and Write conditions on a "dual"-
or inversely ordered integrity classification, comes from Biba's
"strict integrity" model [BIB771. Incorporating an integrity
component into the security level was done first in the I.P. Sharp
Protected Data Management System Model [GR076].

There is some support for the idea that security
classifications also carry a connotation of integrity. This idea
"can be implemented by having integrity classes Unclassified through
Top Secret, with the understanding that the integrity class is not
necessarily equal to the security classification. Typically one
would expect that the security classification dominates the
integrity class.

Integrity Category Set

Integrity category sets are ordered by set inclusion just like
(sensitivity) category sets. Because it is an inversely ordered
component, copying and transformation operations can only reduce the
set of integrity categories.

In this model, there is a "Trusted" integrity category, which
is intended to be used for objects containing software that will be
executed by privileged subjects.

It might be asked why the individual privileges could not be
implemented as integrity categories. The Read condition would then
require that subject could not have a privilege unless the object to
which it had execute access also had that privilege. The problem is
that all the objects to which the subject had read access would have
to have that privilege as well.
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Distribution List

This is the set of names of users who are permitted to read an
object. Distribution lists are ordered by inclusion, the empty set JN
being the least and the set of all users being the greatest.

"WK.
Because the distribution list is one of the inversely ordered

components of the security level, it follows from the Read and Write
conditions that an object can be copied or transformed only into
another object with a smaller or equal distribution list. This
prevents information from receiving a wider distribution than
originally intended.

It may be surprising that a subject has a distribution list.
The intent here is that the subject's distribution list represents a
mode of operation during a temporary session, and it places an upper
limit on the distribution of information it is currently handling.

There is no notion within this model of a particular user on
whose behalf a subject is operating. In order for the distribution
list to have the desired effect of limiting the users who can
receive information, there is an assumption we have to make about
how the system being modeled is interfaced with the outside world.
We assume that an output device being operated by a user is an
object (or more than one object); and its distribution list should
i~clude that user. This assumption would be included in the
security requirements for a trusted login process. The role of
users is explained further below in a separate subsection.

In view of the fact that the distribution list is part of the
security level, and the security level cannot be decreased by an
unprivileged or untrusted subject, there may be some question
whether this mechanism satisfies the intent of "discretionary"
security.

The guidance for discretionary security in [CSC83], which is
extracted in turn from DoD regulations, mentions two points: access
control on an individual basis, and need-to-know. The distribution
list mechanism clearly qualifies on the first point. As far as
need-to-know is concerned, one thing is certain: authorization of
need-to-know cannot be left to a Trojan horse. We know that Trojan
horses are a concern, because they were the rationale for
introducing the *-property, which reappears in this model in the
form of the Read and Write conditions.. Only a trusted, specifically
privileged process can be expected to reflect the intent of an
appropriate user when the distribution list is expanded.
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The difference between a mandatory label like classification
and a discretionary one like the distribution list is that a
specific system administrator or operator must be consulted to
change the former, while the custodian or owner of the object has
sufficient authority to change the latter. This security policy
should be embodied in the specifications for the privileged software
for each of those tasks. It is not embodied in the model because of
the difficulty of capturing the intent of a user. In the model, a
user could be identified as an owner of each object, but this was
not done because there is no formal axiom that explains the meaning
of the relationship.

The term "discretionary" is confusing here, because changes in
the security level are normally the province of "mandatory" or
"non-discretionary" control. Perhaps the distribution list
mechanism should be referred to as "individual" control instead.

Another possible objection is the apparent need to specify
users one-by-one on the distribution list; The Al security policy
calls for the ability to specify access for whole groups at a time.
The apparent discrepancy is due merely to the level of abstraction
of the model. A system implementing this model can specify sets of
users symbolically in any desired way, as long as it is clear which
individual users are included.

Contribution List

The contribution list is a set of users, like the distribution
list, ordered by set inclusion. It is intended to implement
individual control on write access. As in the case of the
distribution list, we need an assumption about the external
interface: the name of any user operating an input device must be
on the contribution list of the object representing that device.

The Read and Write conditions imply that the contribution list
of any object contains all users who may have influenced it, or will
be permitted to influence it in the future.

INPUT, OUTPUT, AND USERS

Users were previously mentioned in the context of individual
access control as elements of distribution lists and contribution
lists. They have a role in modeling the external interfaces to a
system, to explain the source of input and the destination of
output.
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When a model like this is considered in a larger context of
network security, it becomes important to have a more precise notion
how input and output are handled. For this reason, we will now give
more detail on how users may be incorporated formally into the
model.

Let us say that users are actually special subjects. They are
exceptional because they cannot have execute accesses, and because
they cannot have both read and write accesses. This split between a
user as an output sink and as an input source reflects the lack of a
deterministic circuit between the outputs to a user and its
subsequent inputs to the system. A human operator would be modeled
as a pair of users (eyes and hands respectively). A full duplex
network connection is a pair of simplex connections.

Naturally, the distribution list of an output user consists
only of that user; the contribution list of an input user is also
just that user. The distribution list of an input user and the
contribution list of an output user are, by convention, all-
inclusive, so as not to interfere with users' source and sink roles.

Users are also exceptional in that they cannot directly request
changes in the system state, such as access or level changes.
Requests of this kind do not really come from users; they come from
processes running software that has interpreted the user's
keystrokes. This is why we cannot say, for example, that any user,
as a subject, has the privilege to change the individual access
components of any object it owns.

CONCLUS IONS

The model described in this section is too complex to qualify
as a "minimum Al policy model", but it embodies some suggestions
about what is needed in models and leads to some conclusions about
what is still missing.

A minimum Al policy model could be obtained from the one given,
by leaving out all security conditions except Read, Write, and
Tranquility; and dropping the integrity components of the security
level. The result would still have an unusually restrictive
interpretation of discretionary security. The mandatory control of
individual access might, however, be just right for an A2 model. -
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SECTION 5

CONCLUSION

The procurement package for a new system includes security
requirements. These requirements should be specified in enough
detail to make it possible to select or construct an appropriate
model or set of models. Having looked at a number of security
models, it is possible to give at least some broad answers to the
basic questions one faces at the outset of the modelling process.

1. Are there different types of security models?

There are a number of useful distinctions one can make among
security models, though most of them are shades of gray rather than
black/white dichotomies. First, models can be abstract or concrete.
The purpose of abstract models is to investigate fundamental
security issues, such as information flow, using mathematical
techniques. The purpose of concrete models is to guide the design of
a secure system, subsystem, or family of systems. Concrete models
can be categorized according to the interfaces they present and the
assumptions they make about other systems they must interface to.
For example, does the model represent a whole system, like a secure
network, or just a trusted process or a policy manager? Within an
interface type, a model can be more or less adapted to a particular
application, such as a DBMS, message system, or guard.

2. What kind of axioms should a model have?

All models have axioms giving conditions for security or
consistency. Axioms may restrict: (I) the system state, (II)
transitions from one state to another, (III) actions performed with
data objects, or (IV) outputs at various interfaces. The system
state of a model that includes a policy manager indicates the types
of operations currently permitted to subjects on objects. Policy
manager models deal with operations on data objects by categorizing
them and using tokens, usually called access modes, to represent
each category. There may be only a few access modes, such as read
and write, or there may be a large variety of modes representing
specific computations such as relational projection. Note that
axioms of type III are possible only if the model includes an object
manager.

3. Should a model give specifications for individual state-changing
operations, like the Bell-LaPadula rules?
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It is not necessary to limit the state-changing operations to a
fixed list that are individually specified; one can, instead,
attempt to give general conditions for secure state changes. The
rules in the Bell-LaPadula model served two purposes: one was to '4'

provide more constructive design guidance, an objective which is now
typically deferred to a separate formal specification phase; and the
other was to disallow other operations which might satisfy the
axioms, but have other problems like information flow leakage. Now
that general techniques are available for testing for information
flow leakage, it is unnecessarily heavy-handed for a model to limit
operations to a specific list on those grounds.

Models which include the actions of trusted processes, such as
guard models, have a specification-like format because their
security requirements do not lend themselves to general axioms.

4. Should models be formal (in a mathematical or programming
language) or in English?

Every model should have an English (or other suitable natural
language) version to clarify its motivation, objectives, and
concepts. Like system specifications, however, models have problems
and security vulnerabilities that are not easy to pin down unless
the model is expressed formally. Furthermore, verification
techniques for system specifications can be applied only with
respect to a formal version of a model. -'

5. How does one determine whether the model itself is "secure"?
(i.e., adequately and correctly expresses a reasonable security
policy?)

Models generally do not completely express all aspects of
system security, but some tests are available to search for flaws in
what is provided. One can check that a model is a valid
interpretation of a previous model for part of its policy, and one
can apply information flow analysis to look for covert channels.
These techniques are tedious to apply, and are generally used only
informally. Those who apply them informally, however, need to
understand in principle how to perform them rigorously. Another,
more common-sense, approach is to match the intended implications of
the model against its actual logical consequences. The process of
formalizing a verbal model often helps to expose inadequacies.

6. How does one decide whether to use an existing model or design a
new one?

The first step is to identify the security-critical components
that will be developed using a model-based methodology, so that one
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"• ~can tell how many models are needed, what they interface with, and
"-• what assumptions they can or cannot make about other subsystems.
•" One must know the role of each subsystem, e.g., kernel, DBM•S, or
;' guard.

By looking at the kinds of entities and attributes that appear..
in the models surveyed here, one can get an idea what information•°"
needs to be provided about the system users, the protected
resources, and the kinds of information objects that pass between -.
systems (messages, etc.). If the security levels in a particular .S
application are more or less complex than the common
classification-category set version, that will have to be specified. '-

We a review of known mdels with respect to their support of -"
security policy and functional requirements indicates that no model ..
is adequate, a new model can be created by combining or specializing •
existing models or combining features from several. There are I:.
pitfalls in this process -models can have mistakes or oversights
built into them -but the same remark applies to the original model "-

or models. ."
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APPENDIX

GLOSSARY

A number of terms have a special meaning in the context of
computer security modeling, which may differ from their usage in the
DoD information security context. Furthermore, different models
often disagree on the meanings to be attached to certain terms. An
attempt has been made to give definitions reflecting the most common
usage of these terms in the computer security community, although
occasionally a preferred definition is given. Remarks and examples
are often included with definitions.

Access: A relation between a subject and an object that is
restricted by a security policy. Access implies the ability of
the subject to perform some operation or class of operations on
the object. Access can be in various modes, and it can be
gotten and released. Typical modes of access are: read,
write, execute, control, append, delete.

Aggregation: A circumstance in which a collection of information
has a classification higher than any individual item.

Audit Trail: A record of reference monitor transactions intended to
permit the identification of a user or program responsible for
harmful activity.

Capability: An unforgeable ticket, in the possession of a process,
authorizing a particular operation or mode of access to a
specific object.

Category: Compartment.

Channel: A means for transferring information from one system
entity to another.

Classification: A security label from a linearly ordered set,
reflecting the sensitivity of information or the level of
clearance of an individual. The usual classifications for DoD
applications are UNCLASSIFIED, CLASSIFIED, SECRET, and TOP
SECRET (although UNCLASSIFIED is not a "classification" in the
DoD sense of the word). Eight classifications are required for
some National security applications.

Compartment: A security label reflecting access restrictions on the
"basis of need-to-know. A compartment corresponds roughly to an

interest group or topic area, for example: NATO, NUCLEAR. In a
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computer system, compartments may also be used to represent
dissemination controls, caveats, and other distribution"'P
limiters, e.g., NOFORN, FOUO, and NOCONTRACTOR.

Covert Channel: A channel that violates the intent of the security
policy without violating its statement. p

DBMS: Data Base Management System.

Discretionary Policy: A security policy controlling access of
individual users to information, on the basis of need-to-know.

Dominates: A partial ordering on security levels. For example,
SECRET dominates UNCLASSIFIED. It is a weak ordering in the
sense that it includes equality, i.e., any level dominates
itself.

Guard: A computer system acting as an information filter between .
two (or more) systems operating at different security levels.

Information Flow Model: A model for determining whether a given
output of a system was (or was not) influenced by a given
input.

Integrity Policy: A security policy offering protection against
unauthorized modification or destruction of information.

Kernel: The implementation of a reference monitor; it controls
accesses of processes to data objects. It includes a policy
manager and an object manager.

Mandatory Policy: A security policy that restricts access on the
basis of the security levels of subjects and objects.

Multilevel System: A system having users who are not
authorized for all the information present in the system, where
authorization is determined on the basis of security level.

Non-Discretionary Policy: Mandatory policy.

Object: A repository of information; a participant in an access
relation.

Object Manager: A component of a secure system whose state
determines whether a process can perform an operation on an
object.
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Policy Manager: A component of a secure system that receives and
disposes of requests to change the current access state.
Besides a decision response to the requestor, it has an
interface with the object manager to enable approved access
changes.

Reference Monitor: An entity that mediates accesses by subjects to
objects according to a specified protection policy. A reference
monitor must be:

1) complete: it is always invoked;

2) isolated: it is tamperproof;

3) provably correct: it is small enough to be subject to
analysis and tests, the completeness of which can be assured.

Sanitization: To delete sensitive information from a file, or
modify it, so as to lover the file's security level.

Security Level: A security label on system entities, referenced by
some part of the security policy. Security levels are usually
partially ordered (some pairs of levels may be incomparable).
The partial ordering is a lattice if each pair of levels has a
least upper bound and a greatest lower bound.

Security Policy: System requirements intended to prevent
unauthorized disclosure, modification, or destruction of
information. Denial of system service is also considered a
security concern if it is due to malicious activity.

*-Property: (Pronounced star-property): A security policy
restriction that prevents a subject with information at one
security level from writing that information into an object
that is not of an equal or higher level. It originated in the
Bell-LaPadula model; different versions of it exist in several
models.

Subject: A process or user; a participant in an access relation. A
subject is a channel for information flow between the objects
to which it has access.

Trusted: A component of a secure system is said to be trusted if
some aspect of its processing must be relied upon by users or
other components of the secure system to enforce the required
policy. A user is often regarded as trusted for all purposes
with objects which that user is authorized to read.
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Trusted Process: A process, such that some aspect of its operation -
is critical to security. It may be relied upon to accomplish a
task for or provide information to a security kernel (e.g.,
authentication) or it may be granted privileges to override an
aspect of the access policy in a controlled way (e.g., for
downgrading or multilevel object handling). It may be
responsible for output marking; or it may alter kernel. data.

User: A source or sink of information at the external interface of
a computer system. Usually, but not always, a human being.
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